
A New Model for Open Source Software in Public Health
Evan Bauer, Chief Technology Officer, Collaborative Software Initiative
Version 0.4
19 May 2008

The Collaborative Software Initiative (CSI) brings together like-minded companies to build software applications at a
fraction of the cost of traditional methods. CSI introduces a market-changing process that applies open source
methodologies to building Collaborative Software. CSI engages the power of community to build project teams and
provides the central project management function for developing Collaborative Software, including development, testing
and ongoing support for the code. CSI delivers the software to a broader base of customers with commercially supported
open source and Software as a Service (SaaS) models. For applications that don't enable competitive advantage or are
associated with non-value added activities such as compliance, regulatory reporting, and industry standard
communications, Collaborative Software allows customer core team members to provide control and direction over a
project while leveraging the efficiencies of using the same software and reducing costs. This paper discusses the
application of that model to the software needs of the public health community.

IT and Public Healthcare Delivery

It has been said that: "Health care is vital to all of us some of the time,
but public health is vital to all of us all of the time." Public health is the
best example of a a non-competitive activity – always win-win – never a
zero-sum game. In an environment where all contributions are to the
public good, efficiency and effectiveness of delivery are paramount; at
the same time financial resources are always constrained. The needs of
a community for public health delivery are not correlated with that
community's budget for public health.

The demands on public healthcare providers (local, state, and federal)
are increasingly complex and critical. Bio-terrorism or an influenza
pandemic are threats for which public health agencies would need to
respond in conjunction with law enforcement and potentially military
counterparts. Increased national and international air travel and air
transport make the local containment of many infectious diseases
difficult and allow human (as well as animal and vegetable) infection
vectors to disburse nearly immediately and make investigation,
identification, treatment, and quarantine near-real-time activities.
Epidemiology is increasingly working in the present and future, not just
the past tense – and where timely, accurate, information and
communications is critical.

Public health provider IT has been a sector where traditional proprietary
commercial software, federal government provided software, and
academic open source software projects all play a role, with no dominant
model for the creation, enhancement, and support of application
systems.

Challenges in Public Health Software Design and Development

Many of the requirements for software to support public healthcare
delivery are common across providing agencies, but wide variations in

UT-NEDSS Project

With the goal to protect
citizens’ health, UT-NEDSS
project’s objectives include:

➢ Protect the health of
people by detecting
and preventing
disease

➢ Detect disease
outbreaks and
bioterrorism attacks
more rapidly

➢ Enhance the
timeliness and quality
of information

➢ Facilitate the
electronic transfer of
appropriate
information more
efficiently

The UT-NEDSS project is the
localization of the federal
project and promotes the
efficient, integrated and
interoperable disease
surveillance systems at
federal, state and local levels.
The vision for the project is to
move from DOS-based
programs and fax machines
to an integrated surveillance
system that can transfer
appropriate public health,
laboratory and clinical data
efficiently and securely over
the Internet while gathering

scope, scale, demographics, organizational structure, work-flow, and
technical support resources provide challenges to the design of any
system intended to meet the needs of the broad user base. The
integration requirements for any single application will vary based on the
existing or required installed base of related and supporting applications;
at the same time new systems should not restrict or inhibit future choices
of applications. The recurring problem in commercial public health
software has been a function of the interaction of two relatively
independent factors:

1. Most of the commercial packages are derived from an original
custom development project for a large, well-funded public health
agency.

2. There is a relatively small number of such agencies and most
small to medium-sized agencies generally have very tight IT
budgets.

Too often, the result is software whose design was created on a top-
down basis – for example, meeting federal requirements while not
meeting needs of delivery organizations. Those that do meet the needs
of providers (versus regulators and policymakers) have features and
deployment scale and costs appropriate only to large well-funded
jurisdictions. The lack of a traditional commercial market has often
meant that software too frequently becomes stale, dependent on
technical platforms that become obsolete or lack updates to meet the
rapidly changing requirements of public health agencies. User agencies
are too often asked to individually fully fund needed feature development
that is then resold to other agencies.

One recurring problem in most traditional software development for
public health is that software design is done by developers, who may
have some exposure or access to public health professionals (the
doctors, epidemiologists, nurses, and administrators), but typically they
will create requirements and specification documents that will then be
the basis for implementation – the success of which won't be known until
many months or years of development have passed. Even if the
translation from detailed design to working code is faithful, it
memorializes needs defined long before the software is written or used.

Challenges to Open Source Public Health

Open source software is, as a result an increasingly attractive alternative
to commercial packages for use by public health agencies. An important
and outstanding question is what makes a successful community to
create and support large-scale open source software projects to meet
the needs of public health agencies?

Historically the most successful open source projects have been in the
creation of infrastructure software: operating systems (Linux, BSD),
networking components (Apache, BIND, OpenSSH), and database
management systems (MySQL and Postgresql), as well as
development tools from editing environments (Eclipse, NetBeans),
computer language runtimes and compilers (Perl, PHP, Ruby) and
frameworks (Spring, Rails, Zend). This is the software that enables the

and analyzing information
quickly and accurately in
order to identify and track
emerging infectious diseases
and bioterrorism attacks.
Additionally, the UT-NEDSS
project reaches beyond
disease surveillance to
address epidemiological,
biostatistical and health
services issues.

Impact
When deployed, UT-NEDSS
project will directly contribute
to the prevention of sickness
and death by effectively
collecting, identifying, tracking
and trending information
gathered about infectious
diseases and bioterrorism
attacks.

CSI Collaboration Toolset

CSI's software communities
interact using a combination
of web tools implemented
with our partner Collab.net,
extending their commercial
open source service offering.
These include:

➢ Project Tracking
➢ Requirements

Definition and
Tracking

➢ Document
Management

➢ Source Code
Management

➢ Forums with
integrated mailing
lists

➢ Wiki for discussion
and documentation

Internet and is used to build both in-house, commercial and open source
applications across industries and public sector organizations from
Google and Amazon to banking and CRM systems.

CSI Collaborative Project Approach

The Collaborative Software Initiative creates vertical application open
source software built around a founding core team made up of both
practicing professional subject matter experts (SMEs) with professional
software developers. A project methodology that draws on Lean
Software Development and open source best practices supported by
web-based discussion, specification, project tracking, code
management, build, and testing facilities provides for efficient,
geographically dispersed development. The projects are later opened to
broader participation, with CSI and its partners providing enterprise
support and training services to those user organizations who want
them.

The Core Team

The CSI approach to software communities and projects is proving to be
particularly valuable in the creation of needed public health delivery
software. First and foremost, it neither expects developers to know the
needs of doctors, nurses, and epidemiologists better than those
practitioners do; nor does it expect that health professionals have the
skills to design great software. Instead, CSI works to create a core
development team that partners practicing health professionals with a
paid team of experienced open source developers with explicit joint
ownership of the success of the project.

Using a combination of web-based collaboration tools (see sidebar),
regular conference calls with focused agendas, and periodic (typically
quarterly) on-site meetings, the core team is a diverse community that
provides a uniquely effective means of creating very usable, very high
quality software. CSI and the public health agencies each provide an
experienced project or product manager 100% dedicated to the project
who orchestrate a team of full-time and part-time developers working
with practicing health professionals who dedicate a few hours per week
each. There is an appropriate diversity of skills on both sides –
development, database, user interface, and quality assurance among
the developers and nurses, doctors, and epidemiologists from an
appropriate range of agencies among the subject matter experts.

Steering Committee Input and Oversight

Along with the project core team, a steering committee can be used to
provide oversight and perspective on larger goals of the sponsoring
agencies and organizations. Senior management from CSI and the
agencies, knowledgeable academics, as well as senior SMEs from
related organizations and projects provide perspective and a sanity
check to the project managers and CSI.

The Development Methodology

CSI employs variations on a combination of open source practices and
Lean Software Development to produce high-quality application software
both quickly and cost-effectively. Web-based discussion forums linked
to mailing lists, a wiki for design discussions and documentation, peer-
discussed division of labor, and an “early and often” release schedule all
come from our open source heritage. Wherever possible CSI develops
with open source tools and on open source platforms, contributing back
to the communities producing the tools we use. The project starts with
several visioning and end-point definition sessions to define the overall
goals of the project (the high-level roadmap) and to select the business
standards and industry specifications the project will implement.
Detailed design and specification is deferred to the first iteration of each
release – CSI projects produce working systems, not reams of obsolete
requirements definitions.

Time is then spent forming the team, creating a common initial
understanding of the processes and web tools, and visiting the SMEs in
their work environments where the developers get an initial context of
where the systems will be used.

SME team members are educated in the use of User Stories as the
basis for creating a backlog of requirements that are then estimated,
prioritized, designed, and implemented. CSI practices test-driven
development and uses continuous integration to automatically execute
unit, integration, and user acceptance tests to both continuously improve
quality and to provide a place for the core team SMEs to see and try
new features between releases and provide immediate feedback on
correctness and usability of the implementation. Where design, tool, or
implementation alternatives need to be explored, developers split-up and
perform set-based design dives to explore alternatives, then present
their results back to the core team for decision making. Software
releases come every few months, iterations within those releases every
few weeks – design and implementation errors and misconceptions don't
get much time to live.

Results

The first CSI project in the area of public health delivery went from its
initiation meeting to delivery of release 1 software for production parallel
use in less than five months (this is in line with CSI's experience in other
industries.) In tracking the dynamic project roadmap against the end-
point schedule and budget, our core team members get the software
they need when they expect it and at the agreed upon cost. The core
team makes the decision as to when the project and software is
sufficiently mature for open source release – opening the project to the
wider community who can both benefit from and contribute to the work.
CSI provides professional collaboration, support services and high
quality development to that wider community of users, providing the
assurance of a sustainable, software asset for the public health
community as a whole.

